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Abstract

Labeling data correctly is an expensive and challenging task in machine learning,
especially for on-line data streams. Deep learning models especially require a large
number of clean labeled data that is very difficult to acquire in real-world problems.
Choosing useful data samples to label while minimizing the cost of labeling is
crucial to maintain efficiency in the training process. When confronted with
multiple labelers with different expertise and respective labeling costs, deciding
which labeler to choose is nontrivial.
In this paper, we consider a novel weak and strong labeler problem inspired by
humans’ natural ability for labeling, in the presence of data streams with noisy
labels and constrained by a limited budget. We propose an on-line active learning
algorithm that consists of four steps: filtering, adding diversity, informative sample
selection, and labeler selection. We aim to filter out the suspicious noisy samples
and spend the budget on the diverse informative data using strong and weak
labelers in a cost-effective manner. We derive a decision function that measures
the information gain by combining the informativeness of individual samples and
model confidence. We evaluate our proposed algorithm on the well-known image
classification datasets CIFAR10 and CIFAR100 with up to 60% noise. Experiments
show that by intelligently deciding which labeler to query, our algorithm maintains
the same accuracy compared to the case of having only one of the labelers available
while spending less of the budget.

1 Introduction

Obtaining a labeled dataset for training machine learning models is a time consuming and expensive
task. The common practise of curating data continuously collects both data and the metadata that
serves as labels Hendrycks et al. [2018] from the public domain. This immediately reudcesthe cost
of acquiring a high volume of labeled data for deep learning models but introduces the challenge
of handling data streams with noisy labels Han et al. [2018], Wang et al. [2018], i.e., data that is
annotated with wrong class labels. Human experts Sheng et al. [2008] are sought after to correct
labels to enhance the robustness of learning models against label noise. Cognitive science Yan
et al. [2014] has shown that humans are better in answering binary questions, such as True/False
questions, and are less skilled in multiple-choice questions, e.g., identifying one out of 100 classes in
CIFAR-100 benchmark Krizhevsky et al. [2009]. It is more expensive to use strong labelers who are
skilled in directly pointing out true class labels than weak labelers who can only (dis)agree with the
provided labels. To cost effectively correct the noisy labels by experts Sheng et al. [2008], Chang
et al. [2017], it is imperative to assign the correct tasks to the labelers according to their skills and the
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difficulty levels of querying tasks. This becomes particularly challenging in streaming data scenarios
due to future uncertainty, e.g., how to allocate the correction effort across the learning horizon.

Online learning from streaming data corresponds to today’s data common practise to train machine
learning models with a small set of data that is periodically curated from the public domains. Machine
learning models thus need to be learned online from the stream data. Moreover, due to privacy
or regulation constraints gdp, or storage limits, data turns are available for the limited duration.
Moreover, in such scenarios, combating label noise adds to the challenge.

The prior art tries to enhance the robustness of the deep model training against noisy labels in the
off-line scenario by (i) filtering out noisy data through model disagreement Han et al. [2018], Yu
et al. [2019], (ii) correcting noisy labels through the estimated noisy corruption matrix Patrini et al.
[2017], or (iii) modifying the loss functions Ma et al. [2018], Wang et al. [2019]. Among the related
studies, high quality labels from human experts are used to correct labels through the estimate noise
corruption matrix, e.g., the trust data set in Distillation Li et al. [2017] and GLC Hendrycks et al.
[2018]. The trust data sheds light on how a small percentage of high quality labels can prevent deep
models from accuracy degradation due to label noise. However, the focus on the off-line datasets
renders existing approaches insufficient for handling noisy data streams only a subset of which can be
learnt at a time. Indeed, on-line learning from noisy labels can lead to a much more severe degradation
of accuracy than the typical off-line case. Moreover, such a subset of trust data is randomly selected
and the cost of acquiring additional data label yet to be modeled.

In this paper we address the challenge of training a deep classifier from noisy labeled data streams
that are collected over time and that can only be learnt for a limited time. We propose an active
learning framework, DuoLab, which aims to learn a robust classifier by cost-effectively assigning
the labelcorrection task to either a strong or a weak labeler within a labeling budget. Extensively
querying the strong labeler can easily lead to budget exhaustion, whereas the weak labeler might
require multiple queries to achieve the cleansing goal. DuoLab consist of four steps: filtering out the
suspicious data, choosing diverse samples, informativeness ranking, and selecting labelers. While
training the classifier, DuoLab leverages the output of its classifier to filter suspicious data samples.
As for label cleansing, we propose a labeler selection function Q that combines the overall model
confidence and the informativeness of individual samples.

Our contributions are the following. First we design a cost and skill aware active learning framework
for noisy data streams. Secondly, by leveraging the diversity of the labelers we are able to greatly
enhance the robustness of deep models even in challenging on-line learning scenarios. The proposed
Q function can effectively assess the model confidence and informativeness of data samples and
assign the suitable labelers accordingly.

2 Related Work

We summarize the related work in the context of robust learning, active learning, and streaming
data—the main themes discussed in this paper.

Robust learning against noise labels. Training a robust deep classifier against noisy labels is an
active research field Patrini et al. [2017], Ma et al. [2018], Reed et al. [2015], Han et al. [2018].
The main focus is on the off-line scenario where the training data is available at once and can be
learned unlimited. To build robust classifier, the prior art either filters out the suspicious noisy data
by the intermediate results of deep model Han et al. [2018], Yu et al. [2019] or derives noise resilient
loss function Ma et al. [2018], e.g., symmetric cross entropy Wang et al. [2019]. Konstantinov et
al. Konstantinov and Lampert [2019] considers multiple entrusted sources and assign weights to
the sources according to their quality quantified by the difference between the source and target
distributions.

Active learning Active learning Settles [2009] is typically drawn to leverage the expert knowledge
to provide the label information for the useful unlabeled data samples that might be limited in the
real world data set Sourati et al. [2018], Yan et al. [2018]. Having multiple expert, as the experts may
vary in their experience, it is important to match the expertise of labelers to the labeling tasks. While
Yan et al. [2016] considers imperfect labelers that may abstain from labeling, the study in Huang et al.
[2017] assumes having multiple labelers with different costs and qualities and actively selects both
samples and the labelers considering sample usefulness and labeler’s accuracy and cost, assuming
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that all the labelers are prone to make mistakes. The study Sheng et al. [2008] focuses on the selection
of informative samples in the presence of several non-expert labelers via majority voting of the of the
labelers. Considering the same framework, an extension of unbalanced labels is studied in Zhang
et al. [2015]. However, they fail to leverage the labelers based on their expertise in labeling. In
contrast, Tanno et al. [2019] considers several noisy annotators with unknown expertise and jointly
estimates the confusion matrix of the annotators and the true label distribution. Furthermore, the
study Zhang and Chaudhuri [2015] designs a difference classifier that predicts where the non-expert
labeler differs from the expert in a binary classification task. Moreover, a line of research focuses on
multiple uncertain experts’ view in clustering Chen et al. [2018], Chang et al. [2017], however, they
don’t benefit from active learning for informative sample identification.

Streaming Data As an emerging challenge in real-world scenarios, online deep learning is largely
overlooked by the prior art. Some studies have attempted to overcome the convergence problem of
online deep learning using the idea of sliding window Zhou et al. [2012] and Lee et al. [2016]. the
authors in Sahoo et al. [2018] had a different approach to the problem by dynamically changing the
depth of the network from shallow to deep to adapt the model capacity. Noisy data streams have been
studied by Chu et al. [2004] and Zhu et al. [2006] using an ensemble of classifiers to build a robust
model that maximizes the data likelihood. However, the focus of this research was on traditional
machine learning models and is not scalable to deep networks.

3 Dealing with Weak and Strong Labelers

In this paper we consider the following on-line learning scenario, which is illustrated in Figure 1. The
data periodically, at consecutive time steps t, t + 1, . . ., streams into the classifier C in small batches
D for training. Each arriving data batch is used for training the classifier for a limited duration. Here,
we assume the most stringent case in which each batch of data can only be used for training the
classifier until the arrival of the next batch.

Each data instance (xj , ỹj) contains feature inputs xj ∈ X ⊂ Rd and a potentially noisy label
ỹ ∈ Y := {1, ..., N}. Due to annotation errors or even malicious attacks Patrini et al. [2017], the
collected label (ỹ) can be corrupted from the original label (y). The classifier can either learn directly
from the whole batch of dataset or it can first selectively correct labels and then learn from the
combined. clean and cleansed data. We will now go through the components of our method DuoLab
in Figure 1; filtering, clustering and the Q function are explained in Section 4.

There are two types of labelers, namely a weak and a strong one, available to correct the noisy labels
subject to a budget. The weak labelerW is not an expert in labeling and instead of assigning a label
to each unlabeled data instance, it can answer questions about its label with "yes/no". When presented
with the true label,W gives the answer "yes", and "no" otherwise. The strong labeler S on the other
hand, knows the true label of the data; however, it is very costly to use. We assume S to be c times
as expensive asW to label each data point. Therefore, c times askingW with "yes/no" questions is
equivalent to asking S for the true label once.

Filtering
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Figure 1: On-line learning scenario with noisy labels: data streams, classifier, and strong/weak
labelers
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Ultimately, the objective is to train a classifier in the presence of noisy labels considering these
two labelers with a limited budget B per batch for labeling to achieve a certain level of accuracy.
Detecting noisy samples and deciding which data to ask from which labeler is the main challenge of
this problem. Since there exists a limited resource, i.e., the labeling budget, it is crucial to spend it on
cleansing the representative and useful noisy samples. Therefore, the identification of the informative
samples is one of the goals to solve this problem. Moreover, another challenge is, when relying on
the weak labeler, how many "yes/no" questions to ask, and if requiring the strong labeler, how to
allocate its budget for the arriving batch of data over time. To summarize, we aim to address the
following questions in this paper: (i) how to detect noisy samples, (ii) how to identify informative
data samples, and (iii) how to allocate the cleansing budget across the different labelers.

4 DuoLab

We propose an algorithm called DuoLab, which detects the noisy labeled data and decides how
to find their true label within the budget and to train a deep multi-class classifier over time. To
cost-effectively train an accurate classifier, DuoLab leverages the information provided by the labelers
as well as the model’s prediction. DuoLab consists of the four stages of filtering, clustering, ranking
(informative sample selection), and labeler selection. We explain each of these steps below. Here, we
specifically consider convolution neural networks (CNN) as the underlying classifier. The general
design of DuoLab can be applied on different types of classifier.

4.1 Filtering: Identifying the Suspicious Data

The first step of DuoLab is to identify the suspicious data samples that might have corrupted labels.
We aim to filter out the noisy samples by leveraging the model’s prediction and the confidence.
We assume that the CNN classifier is initially trained with a small clean labeled set DI . After the
initial training, data samples {(xj , ỹj)} arriving in batches are provided to the model to predict each
sample’s label. To filter out the noisy samples, for each sample xj we compare the highest and
second-highest predicted label1 ŷ1j and ŷ2j with the given label ỹj , defining the sequence of n highest
predicted labels for xj by C as Ω = {ŷnj }Nn=1. We consider the samples that have ŷ1j = ỹj or ŷ2j = ỹj
to be clean, and add them to the clean set C = {(xc

j , yj)}. The other samples are suspected to be
noisy, and are collected in the suspicious set U = {(xu

j , ỹj)}. Relaxing the filtering criteria to include
lower-ranked predicted labels, e.g., the third and fourth-highest predicted labels, may lead to more
false positives, i.e., noisy samples that are identified as clean ones. Contrarily, more stringent filtering
criteria, e.g., only using the highest predicted label, results into more false negatives.

4.2 Clustering: Adding Diversity

Since cleaning all the noisy samples is very expensive, our goal is to select samples that properly
represent the dataset and are highly informative. It has been shown Wang et al. [2017] that only
relying on the informative sample selection may result in selecting similar samples that would cause
a waste of the labeling budget. To add diversity to the selected samples, we apply kmeans clustering
on the extracted features of the suspicious set U . The features are extracted from the network’s last
layer’s output before the softmax. Next, we select the k most informative samples of each cluster
using active learning as explained in the next section, and discard the rest.

4.3 Ranking: Informativeness

When dealing with a large set of data that requires (re)labeling with a limited budget, the key is to
identify the data samples the model could gain from the most when being trained on them. Active
learning aims to find the most informative data and asks their true labels from the labelers. We
rank the samples based on their informativeness, select the top k ones from each cluster, and put
them in the set K = {(xk

j , ỹj)}. The samples in K are then processed in decreasing order of their
informativeness index i, where i = 1 is the index of the most informative sample in K.

To determine the informativeness of a sample, we estimate the prediction uncertainty of the network
via the prediction probability p(xj) at the output of the softmax layer. We employ a well-known

1The ranks of the predicted labels are determined by the value of softmax output of CNN.
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active learning method called Best-versus-second-best (BvSB) Joshi et al. [2009] to measure the
uncertainty of the model while classifying a sample. This method considers samples for which the
difference between the probabilities of the two most likely classes is the smallest, meaning that
these samples could have easily been classified either way. That is, using pbest and psecond−best to
denote the probabilities of the most likely and second most likely class, the smaller the value of
I(xj) = pbest(xj)− psecond−best(xj), the higher the informativeness of xj .

4.4 Labeler Selection: Cost Optimization

The next step is to decide which labeler to choose considering their cost to cleanse the noisy labels.
We introduce a cost sensitive labeler selection function Q that solicits the appropriate labeler for
each data sample in K. We consider three criteria to be crucial in the process of labeler selection: i)
the informativeness of the sample, ii) the cost of the labelers, and iii) the reliability of the model .
Our aim is to spend more budget on the informative samples, and therefore we set the value of the
selection function to be higher if a sample is more informative, and to guarantee cleansing those
samples we aim to assign the most informative samples to the strong labeler. As the second criterion
is the cost of the labelers, the challenge is to decide how to allocate the limited budget between the
strong and weak labelers. We define the selection function to be lower if the cost is high, resulting in
higher chance of the selection of the weak labeler in costly situations. Moreover, the higher the value
of the function, the higher the chance to ask the strong labeler for labeling. Furthermore, if the model
is not performing well enough, it means we need more cleansing so the value of the function should
increase.

Cost Sensitive Labeler Selection Function. We will now define the cost sensitive labeler selection
function Q and show how it takes into account the three labeler-selection criteria mentioned above.
Before we do so, we define the following measure LV (t) for the overall model reliability up to the
current batch t using the cross-entropy loss on the clean validation set DV :

LV (t) =

V∑
v=1

p(xv, y) log(p(xv, ŷ
1)). (1)

A lower value of LV (t) indicates a higher reliability. In addition, we denote by EW(t) and ES(t)
the numbers of queries from the current batch t that have been asked sofar from the two labelers.
The function Q is only applied when the current total cost does not exceed the budget, that is, when
EW(t) + cES(t) ≤ B. The value of the labeler selection function Q on a data sample xu

j is now
defined as

Q(xu
j ) =

LV (t)

I(xu
j )cES(t)

, (2)

which has a higher value when the model is less reliable, when the sample is more informative, and
when the strong labeler S has not yet been queried very often—the more S is queried during a batch,
the more difficult it becomes to query it for later samples.

Algorithm 1 shows the steps of our proposed method. As indicated in the algorithm, for each data
arrival, after detecting the noisy samples we calculate their values of the cost sensitive selection
function Q. If Q(xu

j ) > Q̄ for some threshold Q̄, xu
j is presented to S to be labeled and added to the

clean set C, otherwise we queryW . If the answer is "No", we repeat the steps until we get the clean
label or we exceed the budget. In the latter case, we discard the sample.

A key challenge about the weak labeler is how to proceed upon receiving "No" for a sample. A
naive approach is randomly choosing from the remaining labels and continuing until receiving "Yes".
Here, we introduce a more intelligent way by askingW for the label of each sample in the order of
Ω, which is the sorted sequence of the labels based on the classifier’s prediction probabilities (see
Section 4.1); this presumably results in fewerW queries. Furthermore, we introduce a parameter w̄
indicating the maximum number of queries to the weak labeler per sample, which prevents wasting
too much of the budget on a single sample and allows for more exploration.

5 Experiments

We evaluate DuoLab on CIFAR-10 and CIFAR-100 whose data instances are corrupted with label
noise and are on-line streamed to the classifier. We compare DuoLab with the state of the art in
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Algorithm 1: Algorithm of DuoLab: filtering, clustering, labeler selection, and training
Input :Initial dataset DI , Data batches D, weak labelerW , strong labeler S, cost of strong labeler c,

maximum number of weak queries per sample w̄, budget B, clustering parameter k
Output :Training set C for the classifier C

1 Train C with DI

2 foreach arriving D = {(xj , ỹj)} and each (xj , ỹj) do
3 if (ŷ1

j = ỹj) or (ŷ2
j = ỹj) then

4 C = {(xc
j , yj),x

c
j :=xj} #clean set

5 else
6 U = {(xu

j , ỹj),x
u
j :=xj} #suspicious set

7 Apply Kmeans clustering on U .
8 From each cluster select the most informative k samples and add to K = {(xk

j , ỹj)}. #Discard the rest
9 for xi in K where i is the informativeness index do

10 w = 0

11 if (Q > Q̄) and (EW (t) + cES(t) + c ≤ B) then
12 Query S, update ES and Q
13 Add xi to C
14 else if (EW(t) + cES(t) + 1 ≤ B) and (w < w̄) then
15 QueryW based on Ω, update EW and Q, w = w + 1
16 if (The answer is "Yes") then
17 Add xi to C
18 else
19 Go to step 14
20 else
21 Discard xi

different, varying learning scenarios, i.e., availability of labelers, cost, and the size of the on-line
batch. We demonstrate how DuoLab improves the accuracy of the classifier using filtering and
cleansing by the weak and strong labelers within the limited budget.

5.1 Experimental Setup

Training Network’s Characteristics. As DuoLab classifier for CIFAR-10 and CIFAR-100, we use
two Convolutional Neural Network (CNN) architectures defined in Ma et al. [2018] with ReLU
activation functions, softmax activation as image classifier and cross-entropy as loss function. We
train the models by using stochastic gradient descent with momentum 0.9, learning rate 0.1, and
weight decay 2×10−3. DuoLab and all baselines are implemented using Keras v2.2.4 and Tensorflow
v1.12, except co-teaching which uses PyTorch v1.1.0.

Label Noise Injection To inject noise into the labels, we select samples with the probability equal to
the noise rate and replace the true label with a random different label with uniform probability. We
use noise rates of 30% and 60% in the training set. The test and validation sets are clean.

Noise Resilient Baselines We put DuoLab in the context of other noise-resistant techniques drawn
from the related work and adapted to the online scenario: D2L Wang et al. [2018] estimates the
dimensionality of subspaces during training to adapt the loss function, Forward Patrini et al. [2017]
corrects the loss function based on the noise transition matrix, Bootstrap Reed et al. [2015] (hard and
soft) uses convex combination of the given and predicted labels for training , and Co-teaching Han
et al. [2018] exchanges mini-batches between two networks trained in parallel.

Training Parameters for CIFAR-10 and CIFAR-100. For CIFAR-10, the initial training set con-
sists of 4K samples, and 1K samples are considered as the validation set to measure model reliability.
The remaining 55K samples are divided into 45K training and 10K testing set. The training data
arrive in 45 batches of 1K samples with 30% and 60% noise in an online setting. The initial set is
trained for 60 epochs and the rest are trained 20 epochs per batch. The epochs are selected in a way
to let the network train enough but also avoid overfitting due to small batch size. We set the cost
sensitive function threshold Q̄ to 10 and the cost of the strong labeler to c = {2, 10}.
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Table 1: The accuracy, the average numbers of queries per labeler per batch, and the TP and FP (true
and false positive) rates for DuoLab and different labeler selection baselines with budget B = 250
and w̄ = 2 for CIFAR-10 ("-" means not applicable).

Noise 30% 60%
Method c Acc(%) no. S no. W TP(%) FP(%) Acc(%) no. S no. W TP(%) FP(%)
DuoLab 2 76.13 22.0 57.0 61.43 3.81 69.44 38.4 63.0 33.57 7.84
DuoLab 10 75.45 4.7 52.5 60.90 3.80 67.42 9.8 51.8 32.95 7.71
DuoLab + Kmeans 2 75.99 15.3 67.1 61.26 3.66 68.61 21.5 78.7 33.38 7.84
DuoLab + Kmeans 10 75.33 4.1 56.1 60.70 3.78 67.53 21.5 78.7 33.38 7.84
Only S 10 74.96 25.0 - 60.80 3.78 66.84 25.0 - 32.84 7.81
OnlyW - 75.11 - 67.6 60.87 3.84 68.93 - 89.5 33.53 7.75
Clean All Suspicious - 77.26 343.2 - 61.72 3.91 75.71 - 575.1 35.03 7.46
No AL(only Filter) - 73.60 - - 60.77 3.78 63.34 - - 32.26 8.11
Opt Filter - 77.78 - - 70.00 - 72.56 - - 40.00 -
No Filter 10 62.21 7.3 96.7 - - 36.91 17.7 24.2 - -

For CIFAR-100 we increase the arriving data batch size to 9K and 60 epochs per batch to cope with
the higher complexity. The cost sensitive function threshold Q̄ was set to 150 and the cost of the
strong labeler to c = {5, 25}. In both datasets, the threshold is determined experimentally. In general,
a high threshold, e.g., Q̄ = 150, leads to using less the strong labeler and more the weak labeler.

For both CIFAR-10 and CIFAR-100, we set the labeler budget of DuoLab to be 25% of the batch size,
which amounts to 250 and 2250 unit cost per batch for each dataset, respectively. The higher budget
leads to more cleansing and therefore, higher accuracy. Whenever the accuracy of the network over
the validation sets drops for r% from the start to the end of a batch, we rollback the model weights to
the previous batch’s parameters before processing the following one. Rollback uses r = 20%. We
report the highest accuracy among batches for each experiment. All the experiments are repeated
three times and the average is reported in the tables. We show the highest accuracy among the first
six rows of the tables 1 and 2 in bold.

5.2 CIFAR-10 Results

The effect of filtering. Here we compare our results with three baselines: Opt Filter, where there is
an optimal filter that can perfectly select all the clean samples and discard all the noisy ones, No Filter,
where there is no filtering, and No AL, where we filter out samples using our filtering method but no
further cleansing is done on the suspicious samples by active learning. As the results show in Table 1,
Opt Filter has a high accuracy due to omitting all the noisy samples and training over a relatively
large clean set (700 and 400 clean samples for 30% and 60% noise). However, despite having a
smaller clean data and some noisy samples due to false positive (FP) detection, our method is able to
get close in terms of accuracy. Comparing to the No AL results, one can observe the effectiveness of
our filtering together with active cleansing.

The effect of clustering. As Table 1 shows, clustering results in cleaning more suspicious samples
compared to DuoLab without clustering; however, since it fails to cleanse fewer highly informative
samples by S, it results in lower accuracy.

The effect of the labeler selection. We compare DuoLab with two extreme labeler selection
baselines: i) Only S , where only the strong labeler is available to be queried, and ii) OnlyW , where
only the weak labeler is available to be queried. Moreover, to show the upper and the lower bound of
the accuracy, we present the accuracy of the case where all the suspicious samples are cleansed and
also when no cleansing is done, namely No AL. As the results show in Table 1, with lower cost for
the strong labeler, i.e., with c = 2, it is more beneficial to use only the strong labeler since it leads to
cleaning more suspicious samples. The reason is that due to w̄, the weak labeler fails to give the true
label if the true label is not among the top predictions of the classifier. However, with higher costs,
using only S results in cleaning a very small number of samples. Contrarily, although using only the
weak labeler might result in cleaning more data, missing some highly informative samples due to the
limitation caused by w̄ results in a low performance. Our proposed method outperforms these two
cases by benefiting from both cleansing the highly informative samples with the strong labeler, and
minimizing the cost with the weak labeler.
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Table 2: The accuracy, the average numbers of queries per labeler per batch, and the TP and FP (true
and false positive) rates for DuoLab and different labeler selection baselines with budget B = 2250
and w̄ = 2 for CIFAR-100 ("-" means not applicable).

Noise 30% 60%
Method c Acc(%) no. S no. W TP(%) FP(%) Acc(%) no. S no. W TP(%) FP(%)
DuoLab 5 39.07 33.3 102.1 32.18 0.44 34.45 44.0 171.9 17.21 0.97
DuoLab 25 39.27 7.3 102.7 32.57 0.45 34.14 8.9 174.2 17.65 0.90
DuoLab + Kmeans 5 38.45 16.9 105.1 33.14 0.49 34.35 17.3 190.8 17.65 0.97
DuoLab + Kmeans 25 38.98 4.0 100.5 32.30 0.49 32.92 4.0 181.4 17.11 0.97
Only S 25 39.57 90.0 - 33.14 0.47 33.13 90.0 - 17.12 0.95
OnlyW - 38.25 - 105.9 32.83 0.48 32.94 - 192.2 17.12 0.99
Clean All Suspicious - 49.05 5085.4 - 40.91 0.45 49.53 6829.6 - 23.38 0.74
No AL(only Filter) - 38.08 - - 32.63 0.44 32.32 - - 16.18 0.98
Opt Filter - 42.28 - - 70.00 - 37.33 - - 40.00 -
No Filter 25 30.86 112.0 - - - 13.19 112.0 - - -

5.3 CIFAR-100 Results

The effect of filtering. As the results in Table 2 show, considering that CIFAR-100 has more classes
than CIFAR-10 and less data per class, filtering is more difficult. However, we succeed in having
a very low FP rate by our filtering method, and therefore we achieve an accuracy that is very close
to the upper-bound of filtering Opt Filter. Comparing the accuracy of No AL and DuoLab with Opt
Filter, one could observe that filtering has a high impact on the performance, especially when the
labelers’ cleansed sample set is small (less than 2% of the batch size), due to a low budget and more
complicated dataset. Moreover, since filtering relies on the model’s prediction, the higher accuracy of
the model leads to a better filtering, i.e., a higher TP and a lower FP rate, which again impacts the
accuracy itself.

The effect of clustering. Similar to CIFAR-10, clustering results in a slightly lower accuracy, since
it affects the number of cleansed samples by the labeler. As shown in Table 2, applying clustering on
the suspicious data causes less cleansing by the strong labeler, which is equivalent to missing more
informative samples.

The effect of the labeler selection. As Table2 shows, DuoLab performs better than Only S and Only
W in the case of high strong query cost. In this case, DuoLab succeeds in cleansing more samples
than Only S and therefore achieves a similar or higher accuracy. This difference is more apparent with
60% noise. Moreover, DuoLab achieves a similar cleansed number compared to OnlyW and due to
benefiting form S besideW , DuoLab guarantees the cleansing of the highly informative samples and
thus results in a more accurate model. The higher the cost is, the more effective our method performs.

5.4 Comparison with the Noise Resilient Models

Table 3: The accuracy of DuoLab and the noise re-
silient baselines for CIFAR-10 and CIFAR-100 with
30% noise.

Method Accuracy (%)
CIFAR-10 CIFAR-100

B
as

el
in

es

D2L 52.77 11.55
Forward 59.94 25.56
Co-teaching 61.52 29.41
Bootstrap soft 48.95 23.35
Bootstrap hard 49.61 24.02

O
ur DuoLab (c = 2, 5) 76.13 39.07

DuoLab (c = 10, 25) 75.45 39.27

We compare our proposed DuoLab with
the baselines described in Section 5.1 under
30% label noise. Table 3 summarizes the
results for different noise-resistant model
baselines and DuoLab. Analyzing the re-
sults in the table shows that although these
methods are well-known to combat the la-
bel noise, they achieve this by benefiting
from a large dataset available for training,
and therefore they fall short to adapt to the
streaming data setting. On the contrary,
DuoLab, benefiting from a novel filtering
method and the knowledge of the experts, excellently adapts to the streaming data scenario with small
batch size and for the limited learning duration.
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6 Conclusion

In this paper we introduce DuoLab a method to overcome the challenge of training deep neural
networks with streaming noisy labeled data by weak and strong labelers. As the strong labeler comes
with its cost of labeling and is constrained by a a budget , our method decides when to use each labeler
to achieve a high level of performance beside cleaning as more samples as possible. As a result of
DuoLab benefiting from the merits of both labelers in cleaning the highly informative samples and
efficiently spending the budget, we are able to perform better than using only one of the labelers. We
achieve this by only cleansing up to 10% of the batch size in CIFAR-10 and 2% in CIFAR-100.

Broader Impact

This core idea of fusing human and artificial intelligence in DuoLab can be broadly applicable to data
management and knowledge extraction. The cost- and privacy-awareness in DuoLab addresses the
gap between state of the practise, i.e., streaming learning on noisy data, and the state of the art on
off-line learning on the clean data. For instance, the rich information embedded in social media or
recommendation systems is unfortunately noisy or even fake and can not be easily extracted through
the off-line resilient solutions. The proposed DuoLab has a great potential to distill the data and
improve the knowledge extraction for the society. On the other hand, if DuoLab fails to defend the
training process against noise, the classifier can end up being inaccurate and may even harm the
society in case of misuse. The other downside of utilizing DuoLab is that we might indirectly foster
the noisy data generation as the cost-efficiency of cleansing data via the labelers improves.
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